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Abstract--Steady, laminar, mixed convection in the fully developed region of horizontal internally finned 
tubes is investigated for the case of uniform heat input axially and uniform wall temperature circum- 
ferentially. The fluid Row and heat transfer characteristics are found to be dependent on a modified Grashof 
number Gr+, Prandtl number Pr, number of fins M and the relative fin height H. Governing differential 
equations are solved numerically for the parametric range M = 4 and 16, H = 0, 0.2, 0.5 and 0.8, Pr = 7 
and Gr+ = 0 to 2x I06. Computed results include the secondary Row components, axial velocity and 
temperature distributions, wall heat flux, friction factor and average Nusselt number. Internal finning is 
found to retard the onset of significant free convective effects and to suppress the enhancements in friction 
factor and Nusselt number compared to smooth tubes. Satisfactory agreement is obtained between the 

present numerical results and previous experimental data. 

INTRODUCTION 

THE NEED for compact heat exchangers has motivated 
extensive research into different methods of heat 
transfer augmentation. An attractive technique which 
has found wide use in industry is internally finned 
tubes. The enhancement achieved by these tubes over 
smooth tube conditions is particularly significant in 
laminar flow. 

Many aspects of the pressure drop and heat transfer 
characteristics of internally finned tubes were con- 
sidered in previous analytical (e.g. refs. [l-7]) and 
experimental (e.g. refs. [&12]) investigations. These 
studies covered different tube geometries (fin height, 
number of fins, straight and spiral fins), both flow 
situations (laminar and turbulent) and the two 
extreme thermal boundary conditions (uniform heat 
input axially and uniform wall temperature axially). 
Most of the analytical studies were limited to the case 
of pure forced convection heat transfer. For turbulent 
flows, the forced convection models succeeded in pre- 
dicting the experimental values of the friction factor 
and Nusselt number reasonably well [S]. However, 
experimental results in the laminar flow region (e.g. 
ref. [ 11 J) have exhibited significant deviation from the 
forced convection models which may be attributed to 
the influence of free convection. 

Due to the complexity of the flow cross-section, 
mixed convection in internally finned tubes was con- 
sidered only in a limited number of analytical studies. 
Prakash and Patankar [13] solved numerically the 
case of fully-developed, laminar mixed convection in 
vertical tubes. This orientation simplified the analysis 
since the pertaining flow is purely axial and identical 
conditions exist in the bays formed by any two adjac- 
ent fins. Mirza and Soliman [14] analyzed mixed con- 
vection in the horizontal orientation ; however, the 
cross-section was simplified by considering only two 
identical vertical fins. In both investigations, the pres- 

ence of the fins was found to retard and suppress the 
free convective effects compared to smooth tubes. 

The objective of this investigation is to extend the 
analysis for the horizontal orientation to a wide geo- 
metrical range in terms of fin heights and number of 
fins in order to produce results relevant to the tubes 
currently used in practice. The theoretical approach 
used here allows for the study of the detailed 
characteristics of fluid flow and heat transfer during 
laminar mixed convection. These details, which are 
difficult to study experimentally, are very useful in 
explaining the overall performance (friction factor 
and Nusselt number) of these tubes. The present pre- 
dictions of the overall performance are compared with 
the available experimental data in order to assess the 
accuracy of this approach. 

ANALYSIS 

Formulation 
The geometry under consideration is shown in Fig. 

1. It consists of a horizontal, circular tube with a 
number of straight longitudinal fins evenly distributed 
around the inner circumference of the tube. Fins are 
assumed to be of negligible thickness with sides ori- 
ented radially within the tube cross-section. There- 
fore, the geometry is completely defined by two par- 
ameters: the number of fins M and the relative fin 
height H. 

This analysis is applicable to steady, laminar flow 
of incompressible, Newtonian fluids. Constant fluid 
properties are assumed, except for the density which 
is temperature-dependent where buoyancy effects are 
considered. Axial conduction and viscous dissipation 
within the fluid are assumed to be negligible. The flow 
is assumed to be fully developed hydrodynamically 
and thermally with uniform heat input axially and 
uniform wall temperature (tube wall and fins) circum- 
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NOMENCLATURE 

total surface area of fins and tube wall 

Im’l 
surface area of fins [rnq 
specific heat [J kg- ’ K- ‘1 
tube diameter, 2r, [m] 
friction factor, defined by equation (10a) 
product of the friction factor and 
Reynolds number at Gr+ = 0 
gravitational acceleration [m s- *] 
modified Grashof number, defined by 
equation (8d) 
relative fin height, I/r, 
local heat transfer coefficient 
[Wm-*K-I] 
averaged heat transfer coefficient 
wrn-*K-l] 
thermal conductivity mm- ’ K- ‘1 
fin height [m] 
number of fins 
average Nusselt number, defined by 
equation (9a) 
average Nusselt number at 
Gr+ = 0 
dimensionless cross-sectional excess 
pressure, defined by equation (8~) 
dimensionless cross-sectional average 
pressure, defined by equation (8~) 
pressure [N m- *] 
cross-sectional excess pressure, defined 
by equation (1) [Nm-) 
cross-sectional average pressure, defined 
by equation (1) [Nm-*] 
Prandtl number 
rate of heat input per unit length [W m- ‘1 
rate of heat transfer from the fins per unit 
length [w m- ‘1 

R 
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r. 
Ra+ 
Re 
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dimensionless radial coordinate, defined 
by equation (8a) 
radial coordinate [m] 
tube radius [m] 
modified Rayleigh number, Gr+ - Pr 
Reynolds number, defined by equation 

(1Oc) 
dimensionless temperature, defined by 
equation (8d) 
dimensionless bulk temperature 
temperature [K] 
uniform wall temperature [K] 
dimensionless axial velocity, defined by 
equation (Sb) 
dimensionless mean axial velocity 
axial velocity [m s- ‘1 
mean axial velocity [m s- ‘1 
dimensionless radial velocity, defined by 
equation (8b) 
transformed dimensionless radial 
velocity, defined by equation (8b) 
radial velocity [m s- ‘1 
dimensionless angular velocity, defined 
by equation (Sb) 
angular velocity [m s- ‘1 
dimensionless axial coordinate, defined 
by equation (10~) 
axial coordinate [ml. 

Greek symbols 

B coefficient of thermal expansion (K-l] 
e angular coordinate 

p viscosity [N s m- *] 
V kinematic viscosity [m’s_ ‘1 

P density [kg m-‘1 

PVI density at wall temperature kg m- ‘1. 

ferentially. Consequently, the three velocity com- 
ponents, the axial pressure gradient and the axial 
temperature gradient are all invariant in the flow 
direction. This analysis considers the case of heating, 
i.e. situations where the wall temperature is higher 
than the fluid temperature. 

Governing equations 
For this three-dimensional internal flow problem, 

we will follow a parabolized Navier-Stokes procedure 
[ 151 in which the pressure approximation quite widely 
used is given by 

p(r, 9, -4 = P(x) +p’(r, 9) (1) 

where p is the cross-sectional average pressure, which 
is assumed to vary linearly in the x-direction while 
p‘, which is permitted to vary within the tube cross- 
section, provides the driving force for the secondary 
flow. The Boussinesq approximation was used in for- 

mulating the body-force terms in the momentum 
equations, i.e. 

P = PwU +B(L-01. (2) 

Using the approximations expressed by relations 
(1) and (2), the governing continuity, momentum and 
energy equations can be expressed in the following 
nondimensional form : 

i av* i a*v+ 2aw 
--RdR+$,,,--,x 1 

+O.SGr+ TCOS 0 (4) 
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FIG. 1. Physical situation and coordinates. 
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where the dimensionless parameters used in equations 
(3)-(7) are given by 

R = r/rO, Pr = pc,fk @a) 

V’=VR, V=“D W=“D 
V’ V 

(W 

P=-+ P’=. p’DZ+gD2rcos(j 
pv v2 (8~) 

m 

T=f-f”, + _ sBQ'D' 
Q'IW) 
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The above mathematical formulation indicates that 
the velocity, pressure and temperature distributions 
for a particular finned tube geometry (i.e. given M 
and H) are functions of the two independent par- 
ameters Gr+ and Pr. Therefore, overall quantities, 
such as the friction factor and average Nusselt 
number, would also be dependent on M, H, Gr+ and 
Pr. The average Nusselt number was calculated based 
on the definition 

%% = liD/k W 

which reduces to the non-dimensional form 

G= -l/T, 

while the friction factor was defined as 

f = D( - d~/dx)K+a;) 

and in dimensionless form 

fRe= -ig=liu_ 

where 

X = s/(D Re), Re = u,D/v. (104 

C’b) 

(lob) 

The dimensionless mean velocity U,,, and the dimen- 
sionless bulk temperature Tb were calculated from 
their respective standard definitions using Simpson’s 
rule in evaluating the area integrals involved. 

It must be pointed out that a transformed radial 
velocity V* was used in equations (3)-(7) instead of 
the velocity V in order to invoke a strong boundary 
condition (V* = 0) at the centreline of the tube. Along 
the solid boundaries, the three velocity components 
and the temperature are equal to zero, while at the 
symmetry plane, the normal velocity component is 
equal to zero and the normal gradients of the other 
two velocity components and the temperature are 
equal to zero. 

Solution technique 
The present analysis assumes that, for any tube 

geometry, the uppermost fin is always oriented in a 
vertical direction. Therefore, a vertical plane passing 
through the tube centreline would always be a plane 
of symmetry for any tube geometry. Half of the tube 
cross-section would then constitute the solution 
domain. 

Governing equations (3)-(7) were solved numeri- 
cally using a control volume-based finite difference 
method [ 161. A major feature of the present mode1 is 
the strong coupling of pressure, velocity and tem- 
perature which was found to be troublesome par- 
ticularly at high Grashof numbers. The SIMPLER 
procedure of Patankar [ 171 was used for handling the 
pressure-velocity coupling. Also, a line-by-tine sweep 
was found necessary to avoid numerical divergence at 
moderate and high Gr+ . Starting from an initial guess, 
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Table I. Values of/ Re and ?% for horizontal smooth tubes Table 2. Values of/ Re, and G,, for internally finned tubes 

Pr = 1 Pr = 7 

Gr’ fRr ?i !Re 7% 

0 15.98 4.367 15.98 4.367 
IO’ 16.59 4.705 16.15 6.007 
105 19.97 6.388 16.90 9.076 
IO” 26.35 9.350 18.67 13.93 

2x too 19.52 16.04 
10‘ 37.22 I-t.33 

A4 H f ReO Nu, 

4 0.2 18.54 4.570 
0.5 36.21 7.763 
0.8 71.30 19.60 

I6 0.2 26.55 4.147 
0.5 129.2 8.326 
0.8 440.7 110.2 

the momentum and energy equations were solved 
simultaneously in order to determine a new value for 
all dependent variables at all mesh points along a 
radial line. After all radial lines have been swept 
successively in the angular direction, thus completing 
an iteration, the new set of velocities and temperature 
were compared with their corresponding values from 
thy’ previous iteration. Convergence was assumed 
when the change in all velocity components and the 
temperature at al1 mesh points was within + 10T3%, 
and the residual of the continuity equation at all mesh 
points was within + 10- 3. 

tributions reported in ref. [18] and the present pre- 
dictions. Excellent agreement was found in magnitude 
and trend. 

The present values off Re, and &?k, for forced 
convection in internally finned tubes are shown in 
Table 2. Most of these results agree with those 
reported in refs. [I, 31 within 2% with a maximum 
deviation of 3%. It is to be noted that there is a 
deviation of up to 2.9% between the values off ReO 
reported in refs. [I, 3J for the geometrical range (M 
and H) covered in Table 2. 

The solution domain was discretized using a mesh 
with even subdivisions in both the R-and B-directions. 
The presence of the fins and their number had an 
influence on the number of subdivisions in the t?- 
direction required for good accuracy. After con- 
siderable experimentation using different meshes, the 
following mesh sizes were chosen (as a compromise 
between accuracy and computer time) in generating 
the final results : 

smooth tube : 30 x 40 (radial x angular) 

finned tubes (M = 4) : 30x60 

finned tubes (M = 16) : 30 x 64. 

Assessment of accuracy 

In addition to the above comparisons, results of 
mixed convection in horizontal internally finned tubes 
were obtained for a few selected geometries using 
different mesh sizes for each geometry. When the 
values off Re and ?&were exponentialIy extrapolated 
to infinitesimal grid spacing it was found that the 
deviation between the results of the selected mesh and 
the extrapolated values was within 1.2% at al1 values 
of Gr+. With such satisfactory results from all these 
tests and comparisons it was concluded that reason- 
able accuracy has been insured by the present numeri- 
cal procedure. 

RESULTS AND DlSCUSSlON 

Accuracy of the present results was assessed by 
comparing the predictions of the present numerical 
procedure (using the above mesh sizes) with previous 
results of some limiting cases. These limiting cases 
include forced and mixed convection in smooth tubes 
and forced convection in finned tubes. The com- 
parisons involved values off Re and K, as well as 
the velocity and temperature profiles for some cases. 

For forced convection in smooth tubes the present 
model predicted f Re, = 15.98 and z, = 4.367 ; both 
are within 0.13% of their respective exact values. 
Values off Re and G for mixed convection in hori- 
zontal smooth tubes are given in Table 1 for Pr = 1 
and 7 over a range of Gr+. Comparison was possible 
with the resuhs of Hwang and Cheng 1181 for Pr = I 
and Gr+ up to IO5 (which is the maximum value used 
in ref. [18]). The deviation in f Re is always less than 
0.3% and the deviation in G is generally within I % 
but increases with Gr+ up to a maximum of 2.4% 
at Gr” = IO’. Comparisons were also made between 
sample results of the velocity and temperature dis- 

Solutions were obtained for finned tube geometries 
corresponding to M = 4 and 16, and H = 0.2,0.5 and 
0.8. A single value of Prandtl number, Pr = 7 (water), 
was used in al1 computations. For each tube geometry, 
results were obtained at different values of the modi- 
fied Grashof number covering the range 0 & Gr” 
Q 2 x 106. Computed results include the axial velocity 
and temperature distributions, the cross-sectional dis- 
tributions of secondary velocity components and locai 
wall heat flux, and the impor~nt overall quantities 
f Re and G. In the following presentation, detailed 
results for a representative sample of the cases studied 
are considered first, followed by a careful examination 
of the overall quantities and finally a comparison 
between the present numerical results and some pre- 
viously published experimental data, 

Secondary pow pattern 
The pattern of the buoyancy-induced secondary 

flow is presented in the five parts of Fig. 2. These 
results correspond to Pr = 7 and Gr- = 2 x t06, i.e. 
Ra+ = 1.4 x IO’. Figure 2(a), in which the smooth- 
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(4 (e) 
FIG. 2. Secondary flow pattern at Gr+ = 2 x 106, Pr = 7 : (a) smooth tube; (b) M = 4, H = 0.2; (c) M = 4, 

H = 0.5; (d) M = 16, H = 0.2; (e) M = 16, H = 0.5. 

tube case is considered, provides a reference for study- 
ing the influence of internal finning on the secondary 
flow pattern. These results show a single cell with 
upward flow along the heated wall and downward 
flow in the core. The absolute value of the secondary 
velocity vector along any radial line reaches a 
maximum near the wall. 

The secondary flow pattern for a tube with a small 
number of short fins (M = 4 and If = 0.2) is shown 
in Fig. 2(b). Two counter-rotating secondary flow 
cells appear in the lower part of the tube, while in the 
upper part the flow pattern is close to the smooth- 
tube behaviour. An exchange of fluid exists between 
the top and bottom parts by upward moving flow 
around the tip of the horizontal fin and downward 
moving flow in the core. Higher secondary flow inten- 
sity can be seen in the lower part than the upper part 
of the tube. These trends continue as the fin height 
increases while keeping the same number of fins, as 
shown in Fig. 2(c). 

For a large number of fins (M = 16). the secondary 
Aow pattern is illustrated in Fig. 2(d) for short fins 
(H = 0.2) and in Fig. 2(e) for long fins (H = 0.5). 
Figure 2(d) shows a complicated pattern with two 
counter-rotating cells in the core of the tube and fluid 
exchange between core flow and each of the bays 
formed by two consecutive fins. In each bay, the ex- 
change flow enters along the lower fin and exits along 
the upper fin. The intensity of secondary flow is always 
minimum in the uppermost bay and maximum in one 
of the lower bays, the exact location of which was 
found to depend on the modified Grashof number. 
For a large number of long fins, Fig, 2(e) shows a 
severely suppressed secondary flow in the bays formed 
by the fins. Many of the features shown in Fig. 2(e) 
are similar to those in Fig. 2(d) except for the reduced 
intensity and the disappearance of the second cell in 
the core. This second cell may form at higher Grashof 
numbers for this geometry. 

The results presented in Fig. 2 demonstrate that 
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(4 (b) 

FIG. 3. Isotherms at Gr+ = 2 x 106, Pr = 7: (a) smooth tube; (b) M = 4, H = 0.2; (c) M = 4, H = 0.5; 
(d) M = 16, H = 0.2; (e) M = 16, H = 0.5. 

internal finning has a strong influence on secondary 
ffow in both magnitude and structure. These influ- 
ences depend in a complicated way on the geometrical 
parameters H and M, and would naturally reflect on 
the remaining parts of the results. 

Temperature distribution 
The isotherms for some sample geometries are pre- 

sented in Fig. 3 corresponding to Gr’ = 2 x IO6 and 
Pr = 7. Figure 3(a) shows significant free convective 
effects for the smooth-tube case. The secondary ffow 
circulation causes a large shift in the location of the 
minimum temperature from the tube centreline (dur- 
ing pure forced convection) downward along the sym- 
metry plane. The local heat flux at the tube wall, which 
can be inferred from Fig. 3(a), was found to vary from 
a minimum at the top of the tube to a maximum 
at the bottom. Also, the absolute values of T are 
considerably lower than their forced convection 
values due to the cross-sectional circulation. 

The case of a horizontal tube with a small number 
of short fins is exemplified in Fig. 3(b) for M = 4 

and H = 0.2. During pure forced convection in this 
geometry, the temperature profile is identical in the 
upper and lower quarters separated by the plane of the 
horizontal fin, and the minimum temperature exists at 
the tube centre. The presence of natural circulation 
gives rise to a second minimum temperature in the 
lower quarter and it destroys the symmetry between 
the two quarters. It is also clear from Fig. 3(b) that 
the lower part of the tube wall becomes a much more 
effective heat transfer surface than the upper part. 
A genera1 reduction in the fluid-to-wall temperature 
difference is experienced with free convection. Similar 
trends can be seen in Fig. 3(c) for M = 4 and H = 0.5. 

At the same Grashof number, Figs. 3(d) and (e) 
show the free convective effects on the temperature 
dist~bution in tubes with a larger number of fins. 
With long fins, there is some degree of separation 
between the core area and the fin bays area. For ex- 
ample, with M = 16 and H = 0.5, Fig. 3(e) shows a 
core area with isotherms similar to those of a smooth 
tube and a number of bays with nearly similar tem- 
perature structure. The interaction between the core 
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(a) (b) 
FIG. 4. Isovels CJ/CJm at Gr+ = 2 x 106, Pr = 7: (a) M = 4, 

H = 0.5 ; (b) M = 16, H = 0.2. 

and bays regions increases as the fin height decreases, 
as shown in Fig. 3(d). From this figure, it can also 
be noted that the amount of heat dissipation varies 
considerably among the fin bays with the second bay 
from the bottom providing the best performance. 

Axial velocity distribution 
For all geometries and all modified Grashof 

numbers, the influence of free convection on the axial 
velocity distribution was found to be less significant 
than the influence on temperature distribution. This 
trend is consistent with the smooth-tube results 
reported in previous investigations (e.g. ref. [18]) 
and would have an impact on the friction factor and 
Nusselt number, results which are presented later. 

A sample of the present axial velocity distributions 
is presented in Figs. 4(a) and (b). The general trend 
in these results is for more mass concentration in the 
lower part of the tube than in the upper part. For very 
long fins (H = 0.8), the deviation in axial velocity 
from the forced convection case was found to be insig- 
nificant up to Gr+ = 2 x IO6 (i.e. Ra+ = 1.4 x 10’). 

Distribution of wall heat flux 
Figures 5 and 6 show the trend in the present results 

of local heat flux distribution at the solid wall (tube 
and fins). These results are presented in terms of h/k, 
where h is the local heat transfer coefficient evaluated 
from the temperature gradient normal to the wall and 
6 is the mean heat transfer coefficient over the whole 
solid surface. 

Figure 5 corresponds to a finned tube with M = 4 
and H = 0.5 and it shows the behaviour at Gr+ = 0, 
10’ and 2 x 106. The abscissa is proportional to dis- 
tance along the wall from the tip of the upper fin to 
the tip of the bottom fin in the direction shown in the 
inset of Fig. 5. At Gr+ = 0, similarity exists between 
bays I and 2, as expected, and the areas near the tips 
of the fins are the most effective heat transfer surfaces. 

As Gr+ increases, a higher proportion of the heat 
dissipation occurs in bay 2, which is consistent with 
the previous results of secondary flow and tem- 
perature distribution. A gradual decrease in relative 
heat transfer effectiveness can be seen at all the sur- 
faces of bay 1 except for the area near the junction of 
the horizontal fin and the circular wall where some 
increase occurs. In bay 2, significant enhancement in 
heat transfer effectiveness is evident at the circular 
wall and the bases of the fins, while decreases in 
effectiveness occur near the fin tips. It must be pointed 
out that the results in Fig. 5 represent heat transfer at 
a particular wall location relative to the average heat 
transfer for each Gr+. Therefore, caution must be 
exercised in interpreting these results since /i depends 
on Gr*, as shown later. 

A second case is shown in Fig. 6 for M = 16, H = 0.2 
and Gr+ = 0, 10’ and 2 x 106. The figure is simplified 
by including only the top bay and the bottom three 
bays since the behaviour at any point within the ex- 
cluded bays was found to be consistent with a gradual 
monotonic change between the corresponding points 
in bays 1 and 2. As expected from the previous results, 
bay 3 (the second from the bottom) gets to be the most 
active at Gr+ = 2 x lo6 while the top bay becomes the 
least active. The modified Grashof number can be 
seen to have a strong influence on the relative heat 
transfer effectiveness of different parts of the solid 
wall. Some similarities exist between Figs. 5 and 6 in 
terms of trend. 

Another way of presenting the heat flux character- 
istics is shown in Fig. 7 in terms of QaQ’, where Q; 
is the integrated sum of the heat transfer rate from 
the sides of the fins per unit axial length. For M = 4 
and H = 0.2, QaQ first decreases with Gr+ and then 
increases gradually. An increase in either M or H 
causes an increase in the value of Gr+ at which Q;/Q’ 
starts decreasing. This is due to the fact that secondary 
flow is retarded within the bays by increases in either 
M or H, as shown earlier. Comparing Q;/Q’ to AJA, 
which is the ratio of the total surface area of the fins 
to the total surface area of the solid wall, we find that 
the fins are more effective heat transfer surfaces for 
all the geometries in Fig. 7 at low Gr+. With the 
decrease in QaQ at high Gr+, QaQ becomes smaller 
than A$A for some geometries (e.g. M = 4, H = 0.2 
and 0.5) which indicates that, on average, the circular 
wail becomes more effective than the fins. This trend 
may again reverse at Gr+ higher than the values 
covered in this investigation, as suggested by the 
behaviour with M = 4 and H = 0.2 (where there is a 
gradual increase in Q;/Q’ at high Gr+). 

Friction factor and Nusselt number 
Values off Re/f Re,, where f Re, corresponds to 

pure forced convection for the same geometry, are 
presented in Fig. 8 with the smooth-tube case included 
for reference. These results show that f Re/f ReO 
remains equal to unity up to a critical Grashof number 
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FIG. 5. Distribution of wall heat flux for M = 4. H = 0.5 and Pr = 7. 
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FIG. 6. Distribution of wall heat flux for M = 16, H = 0.2 and Pr = 7. 
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FIG. 7. Fractional fin heat dissipation as a function of Gr+ (Pr = 7). 
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FIG. 8. The friction factor ratio as a function of Gr+ (Pr = 7). 

beyond which f Rejf Re, increases with Gr+. This 
critical Gr+ increases as either M or H increases, which 
can be attributed to the pattern by which the finning 
geometry retards the onset of secondary flow. Also, 
due to the fact that the presence of the fins generally 
suppresses the values of the secondary velocities, we 
find that the ratio f Relf Reo decreases with increases 
in either M or H at any given Gr+. For smooth tubes, 
the enhancement in the friction factor due to free 
convection exceeds that of finned tubes except for the 
geometry M = 4 and H = 0.2 at high Gr+. -- 

Figure 9 shows the variation of Nu/NuO with Gr+, 
where %, is the pure forced convection value for the 
same geometry. The prevailing trends are similar to 
the ones discussed above in connection with the fric- 
tion factor results. However, it must be noted that for -- 
any geometry, NulNuO far exceeds f Rejf Re, at any 

Gr+. This is consistent with the earlier results where 
it was shown that the influence of the free convective 
currents on the temperature distribution is much 
stronger than the influence on the axial velocity dis- 
tribution. The manner by which variations in M and -- 
H influence Nu/NuO is consistent with previously 
published experimental and theoretical results [ 11, 13. 
141. 

Comparison with experimental results 
Predictions of the present theoretical investigation 

were compared with experimental data of fully- 
developed, laminar, mixed convection of water in 
horizontal internally finned tubes with uniform heat 
input axially [I 11. This comparison is shown in Fig. 
10 for a tube with M = 16 and H = 0.318, and in Fig. 
11 for a tube with M = 10 and H = 0.325. In both 

- h4=4 
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FIG. 9. The Nusselt number ratio as a function of Gr+ (Pr = 7). 
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FIG. 10. Comparison of Nu/Nu,, with experimental data for M = 16 and H = 0.318 (f+ = 4.3). 

cases, the theoretical predictions were generated at 
a Prandtl number equal to the mean value for the -- 
respective data set. Only the values of Nu/Nu,, were 
used in this comparison since f Re/f Re, were not 
reported in ref. [ 1 I]. 

Figures 10 and 11 show that the experimental data -- 
of Nu/NuO are overpredicted by about lO-15%. It 
should be recalled that the present analysis assumes 
negligible fin thickness and uniform fin temperature 
(i.e. 100% fin efficiency). Both these assumptions 
result in slight overestimation of Nusselt number for 
the geometries considered in Figs. 10 and 11 [19]. 
Also, the experimental uncertainty in a was reported 
to bc within + 15% [I 11. Taking these factors into 
account, it may be concluded that the comparisons 
shown in Figs. 10 and 1 I are quite satisfactory. 

2 25 

2 00 

1.25 

1.00 , 

CONCLUDING REMARKS 

A numerical analysis of laminar, fully-developed 
mixed convection in horizontal internally finned tubes 
has been presented encompassing a wide range of 
geometrical parameters. The results show that tube 
geometry (M and H) has a strong influence on the 
pattern and intensity of the secondary flow currents, 
which is in turn reflected on the axial velocity and 
temperature distributions, wall heat flux, friction fac- 
tor and Nusselt number. In general, an increase in 
either M or H suppresses secondary flow in the bays 
formed by the fins at any given Grashof number. 
Consequently, the departure off Re and a from 
their respective forced convection values begins at 
higher Grashof numbers as M or H increases. This 

- Present Analysis 

. Experiment [I I] 

/’ 

-- 
FIG. 1 I. Comparison of Nu/NuO with experimental data for M = 10 and H = 0.325 (Pr = 4.2). 
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trend in the overall performance is consistent with 
previously reported experimental data [ 1 l] and is now 
justified by the detailed fluid flow and heat transfer 
characteristics presented in this investigation. 
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ANALYSE NUMERIQUE DE LA CONVECTION LAMINAIRE MIXTE DANS DES 
TUBES HORIZONTAUX AILETES INTERIEUREMENT 

R&sum&-La convection permanente, laminaire, mixte dans la region pleinement Ctablie dun tube inter- 
ieurement ailete est Ctudib dans le cas dune entree de chaleur axialement uniforme et dune temperature 
parietale uniforme sur la &conference. Les caracteristiques de l%coulement et du transfert de chaleur sont 
dependantes du nombre de Grashof modifii Gr’, du nombre de Prandtl Pr, du nombre d’ailettes M et de 
la hauteur relative d’ailette H. Les equations sont resolues numeriquement pour le domaine parametrique 
M = 4 et 16, H = 0, 0,2. 0,5 et 0,8, Pr = 7 et Gr+ = 0 a 2 x 106. Les resultats du calcul incluent les 
composantes de I’ecoulement secondaire, les distributions de la vitesse axiale et de la temperature, le flux 
thermique paribtal, le coefficient de frottement et le nombre de Nusselt moyen. L’ailetage inteme retarde 
l’apparition des effets de convection libre et supprime l’amelioration du coefficient de frottement et du 
nombre de Nusselt, en comparaison du cas des tubes lisses. Un accord satisfaisant est obtenu entre les 

presents resultats numeriques et les don&s experimentales anterieures. 
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NUMERISCHE UNTERSUCHUNG DER LAMINAREN MISCHKONVEKTIOS IN 
WAAGERECHTEN. INNEN BERIPPTEN ROHREN 

Zusammenfassung-Die stationire laminare Mlschkonvektion im Bereich vollstlndig entulckelter 
Striimung m emem honzontalen. innen berippten Rohr wird untersucht. Dabe~ wird der Fall gleich- 
mgBiger axialer Wlrmezufuhr und gleichm5Diger Wandtemperatur am Umfang betrachtet. Es zelgt sich. 
da0 Striimung und Wsrmeiibergang von einer modilizierten Grashof-Zahl (Gr*), der Prandtl-Zahl (Pr), 
der Anzahl der Rippen (iV) und der relativen Rippenhiihe (H) abhlngen. Die grundlegenden Differ- 
entlalgleichungen werden numerisch im folgenden Parameterbereich gelast : .M = 4 und 16. H = 0; 0.2: 
0.5 und 0.8 : Pr = 7 und Gr+ = 0 bis 2 x 106. Folgende GrdBen werden berechnet : die Komponenten der 
Sekundlrstriimung. die Verteilungen von Geschwindigkeit und Temperatur. die Wiirmestromdlchte an der 
Wand, der Reibungsbeiwert und die mittlere Nusselt-Zahl. Es zeigt sich. dal3 die Innenberippung das 
Einsetzen einer spiirbaren freien Konvektion verziigert : Irn Vergleich zu glatten Rohren wird die Erhiihung 
des Reibungsbeiwerts und der Nusselt-Zahl unterdruckt. Die tibereinstimmung mit friiheren Ver- 

suchsergebnissen 1st befrledlgend. 

gRCJIEHHbIfi AHAJIW3 JIAMMHAPHOR CMElUAHHOfi KOHBEKLJZIM B 
I-OPMOHTAJIbHbIX TPYEAX C BHYTPEHHHM OPEBPEHMEM 

AtauoT8wPHiccnenye~cn ycraHoawuanca naMHHapHan ccdetuaHHan KOHB~KUH~ B nonHoCTbm pa3nH- 
TO3 o6nacrH rOpH30HXiJlbHblX Tpj’6C BH)'TpCHHHM Ope6vHHeM B CJIy'Iae aKCH&"bHOrO "01u)Oila TeWh3 

H omioporuloii no oKpyur0cTii reb4nepaTypbt. HaAneHo. -0 xapaKTept3crHKH TeYeHw wfz~ocr~ H 
TeIlJlonepeHoca ~BHCXT OT M~LUI@W~~OB~HHYX wcen rpacr0rJa Gr+ H npaHJ.tTJln Pr, KO.,HW‘!TBa 

pe6ep M H HX OTHOCHTeJIbHO~ ~btC0TbI H. %VXIeHHO pelllm~cn 0npeJlenaIome &I@cpeHUH~bHbie 

ypaeHeHm JLNI napawTpoe M = 4 H 16, H = 0; O,2; OS H 0,8, Pr = 7 H Gr+ = 0 - 2 x 106. nonyvensr 
pc3yJlbraTbl MX KOMIlOHeHT CtiOpOCTH BTOPH'iHOrO Te'IeHHK, aKCHaJlbHOk CKOpOCTH H paClI~%JTCHHK 
~eMneparyp,TenJIoeoro noTOKa Ha CTeHLe,KoS#@HUHeHTa Tpe~~n H CpenHero 3HaqeHHn gIIc_la Hycce- 
JlbTa.Ha&leHo,'lTO BHyQWiHe.e ope6peHHe 3aTKrHBBCT IlOpOr 3aMeTHOrO BJlHKHHnCBO602HOfi KOHBeK- 
wisi H nonannner pocr Lo*muieIFTa Tpetmn H YHcna &WXJIbTa no cpaeHemno co cnysae% rnanKHx 
~py6. nOJIy'ieH0 yLlOBJleTBOpHTeJlbHOe COI-JIaCHe MeXLIy II~ACTaBneHHbtMH 'IHCJIeHHbIMH lX3y.TbTaTMH 


