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Numerical analysis of laminar mixed convection
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Abstract—Steady, laminar, mixed convection in the fully developed region of horizontal internally finned
tubes is investigated for the case of uniform heat input axially and uniform wall temperature circum-
ferentially. The fluid flow and heat transfer characteristics are found to be dependent on a modified Grashof
number Gr*, Prandtl number Pr, number of fins M and the relative fin height 4. Governing differential
equations are solved numerically for the parametric range M =4 and 16, H=0, 0.2,0.5 and 0.8, Pr =7
and Gr* =0 to 2x 10% Computed results include the secondary flow components, axial velocity and
temperature distributions, wall heat flux, friction factor and average Nusselt number. Internal finning is
found to retard the onset of significant free convective effects and to suppress the enhancements in friction
factor and Nusselt number compared to smooth tubes. Satisfactory agreement is obtained between the
present numerical results and previous experimental data.

INTRODUCTION

THE NEED for compact heat exchangers has motivated
extensive research into different methods of heat
transfer augmentation. An attractive technique which
has found wide use in industry is internally finned
tubes. The enhancement achieved by these tubes over
smooth tube conditions is particularly significant in
laminar flow.

Many aspects of the pressure drop and heat transfer
characteristics of internally finned tubes were con-
sidered in previous analytical (e.g. refs. [1-7]) and
experimental (e.g. refs. [8-12]) investigations. These
studies covered different tube geometries (fin height,
number of fins, straight and spiral fins), both flow
situations (laminar and turbulent) and the two
extreme thermal boundary conditions (uniform heat
input axially and uniform wall temperature axially).
Most of the analytical studies were limited to the case
of pure forced convection heat transfer. For turbulent
flows, the forced convection models succeeded in pre-
dicting the experimental values of the friction factor
and Nusselt number reasonably well [5]. However,
experimental results in the laminar flow region (e.g.
ref. [11]) have exhibited significant deviation from the
forced convection models which may be attributed to
the influence of free convection.

Due to the complexity of the flow cross-section,
mixed convection in internally finned tubes was con-
sidered only in a limited number of analytical studies.
Prakash and Patankar [13] solved numerically the
case of fully-developed, laminar mixed convection in
vertical tubes. This orientation simplified the analysis
since the pertaining flow is purely axial and identical
conditions exist in the bays formed by any two adjac-
ent fins. Mirza and Soliman [14] analyzed mixed con-
vection in the horizontal orientation; however, the
cross-section was simplified by considering only two
identical vertical fins. In both investigations, the pres-

ence of the fins was found to retard and suppress the
free convective effects compared to smooth tubes.

The objective of this investigation is to extend the
analysis for the horizontal orientation to a wide geo-
metrical range in terms of fin heights and number of
fins in order to produce results relevant to the tubes
currently used in practice. The theoretical approach
used here allows for the study of the detailed
characteristics of fluid flow and heat transfer during
laminar mixed convection. These details, which are
difficult to study experimentally, are very useful in
explaining the overall performance (friction factor
and Nusselt number) of these tubes. The present pre-
dictions of the overall performance are compared with
the available experimental data in order to assess the
accuracy of this approach.

ANALYSIS

Formulation

The geometry under consideration is shown in Fig.
1. It consists of a horizontal, circular tube with a
number of straight longitudinal fins evenly distributed
around the inner circumference of the tube. Fins are
assumed to be of negligible thickness with sides ori-
ented radially within the tube cross-section. There-
fore, the geometry is completely defined by two par-
ameters: the number of fins M and the relative fin
height H.

This analysis is applicable to steady, laminar flow
of incompressible, Newtonian fluids. Constant fluid
properties are assumed, except for the density which
is temperature-dependent where buoyancy effects are
considered. Axial conduction and viscous dissipation
within the fluid are assumed to be negligible. The flow
is assumed to be fully developed hydrodynamically
and thermally with uniform heat input axially and
uniform wall temperature (tube wall and fins) circum-
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¢, specific heat [Jkg='K~']

D tube diameter, 2r, [m]

I friction factor, defined by equation (10a)
product of the friction factor and
Reynolds number at Gr* = 0

g gravitational acceleration [ms~?]
modified Grashof number, defined by
equation (8d)

relative fin height, //r,

local heat transfer coefficient
Wm~?K~']

averaged heat transfer coefficient
Wm~?K~]

thermal conductivity [Wm~"'K ']

fin height [m]

number of fins

average Nusselt number, defined by
equation (9a)

average Nusselt number at

Grt =0

dimensionless cross-sectional excess
pressure, defined by equation (8c)
dimensionless cross-sectional average
pressure, defined by equation (8c)
pressure [Nm™?

cross-sectional excess pressure, defined
by equation (1) [Nm~7

cross-sectional average pressure, defined
by equation (1) [Nm~?

Pr Prandtl number

Q’  rate of heat input per unit length [Wm™~']
¢ rate of heat transfer from the fins per unit

length (Wm™']
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NOMENCLATURE
A total surface area of fins and tube wall R dimensionless radial coordinate, defined
[m?] by equation (8a)
Ae surface area of fins [m?] r radial coordinate [m]

ro tube radius [m]

Ra* modified Rayleigh number, Gr* - Pr

Re  Reynolds number, defined by equation
(10c)

T dimensionless temperature, defined by

equation (8d)

7, dimensionless bulk temperature

t temperature [K]

te uniform wall temperature (K]

U dimensionless axial velocity, defined by
equation (8b)

U, dimensionless mean axial velocity

u axial velocity [ms™]

u,  mean axial velocity [ms~']

14 dimensionless radial velocity, defined by
equation (8b)

V*  transformed dimensionless radial
velocity, defined by equation (8b)

v radial velocity [ms~']

74 dimensionless angular velocity, defined
by equation (8b)

w angular velocity [ms~']
X dimensionless axial coordinate, defined
by equation (10c)
X axial coordinate [m].
Greek symbols
B coefficient of thermal expansion [K ']
g angular coordinate
u viscosity [Nsm~7]
v kinematic viscosity [m?s~ ]
p density [kgm™?]
Pu density at wall temperature [kgm™?].

ferentially. Consequently, the three velocity com-
ponents, the axial pressure gradient and the axial
temperature gradient are all invariant in the flow
direction. This analysis considers the case of heating,
i.e. situations where the wall temperature is higher
than the fluid temperature.

Governing equations

For this three-dimensional internal flow problem,
we will follow a parabolized Navier—Stokes procedure
[15] in which the pressure approximation quite widely
used is given by

p(r,0,x) = p(x)+p'(r,0) (1)

where j is the cross-sectional average pressure, which
is assumed to vary linearly in the x-direction while
p’, which is permitted to vary within the tube cross-
section, provides the driving force for the secondary
flow. The Boussinesq approximation was used in for-

mulating the body-force terms in the momentum
equations, i.e.

p = pull+ Bt — D). 2

Using the approximations expressed by relations
(1) and (2), the governing continuity, momentum and
energy equations can be expressed in the following
nondimensional form:

av* ow

ar tag =" 3)
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F1G. 1. Physical situation and coordinates.
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where the dimensionless parameters used in equations
(3)—(7) are given by

R=rlry, Pr=upc,lk (8a)
U=—t vr=vr v="2 w"D
D dp\ ’ v v
2\ dx
(8b)
. P 'D?  gD?
P=;5—2, P’=va2 +%~rrc050 (8¢c)
-, . _gbo'D’
= Q'/(nk)’ T omhvt ®d)
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The above mathematical formulation indicates that
the velocity, pressure and temperature distributions
for a particular finned tube geometry (i.e. given M
and H) are functions of the two independent par-
ameters Gr* and Pr. Therefore, overall quantities,
such as the friction factor and average Nusselt
number, would also be dependent on M, H, Gr* and
Pr. The average Nusselt number was calculated based
on the definition

Nu = hDjk (9a)
which reduces to the non-dimensional form
Nu=—~1T, (9v)
while the friction factor was defined as
f= D(—dp/dx)/(2puz) (10a)
and in dimensionless form
fRe= —%g—;:uUm (10b)
where
X = x/(DRe), Re=u,Djv. (10c)

The dimensionless mean velocity U, and the dimen-
sionless bulk temperature T, were calculated from
their respective standard definitions using Simpson’s
rule in evaluating the area integrals involved.

It must be pointed out that a transformed radial
velocity V* was used in equations (3)—(7) instead of
the velocity ¥ in order to invoke a strong boundary
condition (¥* = 0) at the centreline of the tube. Along
the solid boundaries, the three velocity components
and the temperature are equal to zero, while at the
symmetry plane, the normal velocity component is
equal to zero and the normal gradients of the other
two velocity components and the temperature are
equal to zero.

Solution technique

The present analysis assumes that, for any tube
geometry, the uppermost fin is always oriented in a
vertical direction. Therefore, a vertical plane passing
through the tube centreline would always be a plane
of symmetry for any tube geometry. Half of the tube
cross-section would then constitute the solution
domain.

Governing equations (3)—(7) were solved numeri-
cally using a control volume-based finite difference
method [16]. A major feature of the present model is
the strong coupling of pressure, velocity and tem-
perature which was found to be troublesome par-
ticularly at high Grashof numbers. The SIMPLER
procedure of Patankar [17] was used for handling the
pressure-velocity coupling. Also, a line-by-line sweep
was found necessary to avoid numerical divergence at
moderate and high Gr™. Starting from an initial guess,
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Table 2. Values of f Re, and 1—\’;0 for internally finned tubes

Pr=1 Pr=17 M H f Re, Nu,
Gr* fRe Nu fRe Nu 4 0.2 18.54 4.570
0.5 36.21 7.763
0 15.98 4.367 15.98 4.367 0.8 71.30 19.60
10* 16.59 4.705 16.15 6.007
5
10° 19.97 6.388 16.90 9.076 6 02 26.55 4747
10 26.35 9.350 1867  13.93
A 0.5 129.2 8.326
2x10 1952 16.04 08 40,7 102
10 3722 1433 ’ ) :

the momentum and energy equations were solved
simultaneously in order to determine a new value for
all dependent variables at all mesh points along a
radial line. After all radial lines have been swept
successively in the angular direction, thus completing
an iteration, the new set of velocities and temperature
were compared with their corresponding values from
the previous iteration. Convergence was assumed
when the change in all velocity components and the
temperature at all mesh points was within +1073%,
and the residual of the continuity equation at all mesh
points was within +107%

The solution domain was discretized using a mesh
with even subdivisions in both the R- and 8-directions.
The presence of the fins and their number had an
influence on the number of subdivisions in the §-
direction required for good accuracy. After con-
siderable experimentation using different meshes, the
following mesh sizes were chosen (as a compromise
between accuracy and computer time) in generating
the final results:

30x40 (radial x angular)
30x 60
30x 64,

smooth tube:
finned tubes (M = 4):
finned tubes (M = 16):

Assessment of accuracy

Accuracy of the present results was assessed by
comparing the predictions of the present numerical
procedure {using the above mesh sizes) with previous
results of some limiting cases. These limiting cases
include forced and mixed convection in smooth tubes
and forced convection in finned tubes. The com-
parisons involved values of f Re and Nu, as well as
the velocity and temperature profiles for some cases,

For forced convection in smooth tubes the present
model predicted f Re, = 15.98 and Nu, = 4.367; both
are within 0.13% of their respective exact values.
Values of f Re and Nu for mixed convection in hori-
zontal smooth tubes are given in Table 1 for Pr =1
and 7 over a range of Gr*. Comparison was possible
with the results of Hwang and Cheng {18] for Pr =1
and Gr* up to 10° (which is the maximum value used
in ref. [18]}. The deviation in f Re is always less than
0.3% and the deviation in Nu is generally within 1%
but increases with Gr* up to a maximum of 2.4%
at Gr* = 10°. Comparisons were also made between
sample results of the velocity and temperature dis-

tributions reported in ref. [18] and the present pre-
dictions. Excellent agreement was found in magnitude
and trend.

The present values of f Re, and Nu, for forced
convection in internally finned tubes are shown in
Table 2. Most of these results agree with those
reported in refs. {1, 3] within 2% with a maximum
deviation of 3%. It is to be noted that there is a
deviation of up to 2.9% between the values of f Re,
reported in refs. {1, 3] for the geometrical range (M
and H) covered in Table 2.

In addition to the above comparisons, results of
mixed convection in horizontal internally finned tubes
were obtained for a few selected geometries using
different mesh sizes for each geometry. When the
values of f Re and Nu were exponentially extrapolated
to infinitesimal grid spacing it was found that the
deviation between the results of the selected mesh and
the extrapolated values was within 1.2% at all values
of Gr*. With such satisfactory results from all these
tests and comparisons it was concluded that reason-
able accuracy has been insured by the present numeri-
cal procedure.

RESULTS AND DISCUSSION

Solutions were obtained for finned tube geometries
corresponding to M = 4 and 16, and H = 0.2,0.5 and
0.8. A single value of Prandtl number, Pr = 7 (water),
was used in all computations. For each tube geometry,
results were obtained at different values of the modi-
fied Grashof number covering the range 0 < Gr*
< 2 x 108, Computed results include the axial velocity
and temperature distributions, the cross-sectional dis-
tributions of secondary velocity components and local
wall heat flux, and the important overall quantities
f Re and Nu. In the following presentation, detailed
results for a representative sample of the cases studied
are considered first, followed by a careful examination
of the overall quantities and finally a comparison
between the present numerical results and some pre-
viously published experimental data.

Secondary flow pattern

The pattern of the buoyancy-induced secondary
flow is presented in the five parts of Fig. 2. These
results correspond to Pr =7 and Gr~ =2x10% i.e.
Ra* = 1.4x107. Figure 2(a), in which the smooth-
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F1G. 2. Secondary flow pattern at Gr* = 2% 105 Pr = 7: (a) smooth tube; (0) M = 4, H = 0.2; (c) M =4,
H=05,dM=16H=02;(e) M=16,H=05.

tube case is considered, provides a reference for study-
ing the influence of internal finning on the secondary
flow pattern. These results show a single cell with
upward flow along the heated wall and downward
flow in the core. The absolute value of the secondary
velocity vector along any radial line reaches a
maximum near the wall,

The secondary flow pattern for a tube with a small
number of short fins (M = 4 and H = 0.2) is shown
in Fig. 2(b). Two counter-rotating secondary flow
cells appear in the lower part of the tube, while in the
upper part the flow pattern is close to the smooth-
tube behaviour. An exchange of fluid exists between
the top and bottom parts by upward moving flow
around the tip of the horizontal fin and downward
moving flow in the core. Higher secondary flow inten-
sity can be seen in the lower part than the upper part
of the tube. These trends continue as the fin height
increases while keeping the same number of fins, as
shown in Fig. 2(c).

For a large number of fins (M = 16}, the secondary
flow pattern is illustrated in Fig. 2(d) for short fins
(H = 0.2) and in Fig. 2(e) for long fins (H = 0.5).
Figure 2(d) shows a complicated pattern with two
counter-rotating cells in the core of the tube and fluid
exchange between core flow and each of the bays
formed by two consecutive fins. In each bay, the ex-
change flow enters along the fower fin and exits along
the upper fin. The intensity of secondary flow is always
minimum in the uppermost bay and maximum in one
of the lower bays, the exact location of which was
found to depend on the modified Grashof number.
For a large number of long fins, Fig. 2(¢) shows a
severely suppressed secondary flow in the bays formed
by the fins. Many of the features shown in Fig. 2(e)
are similar to those in Fig. 2(d) except for the reduced
intensity and the disappearance of the second cell in
the core. This second cell may form at higher Grashof
numbers for this geometry.

The results presented in Fig. 2 demonstrate that
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F16. 3. Isotherms at Gr* = 2x 10%, Pr=7: (a) smooth tube; (b) M =4, H=02;(c) M =4, H=0.5;
M M=16H=02; () M=16,H=0.5,

internal finning has a strong influence on secondary
flow in both magnitude and structure. These influ-
ences depend in a complicated way on the geometrical
parameters H and M, and would naturally reflect on
the remaining parts of the results.

Temperature distribution

The isotherms for some sample geometries are pre-
sented in Fig. 3 corresponding to Gr* = 2 x 10% and
Pr = 7. Figure 3(a) shows significant free convective
effects for the smooth-tube case. The secondary flow
circulation causes a large shift in the location of the
minimum temperature from the tube centreline (dur-
ing pure forced convection) downward along the sym-
metry plane. The local heat flux at the tube wall, which
can be inferred from Fig. 3(a), was found to vary from
a minimum at the top of the tube to 2 maximum
at the bottom. Also, the absolute values of T are
considerably lower than their forced convection
values due to the cross-sectional circulation.

The case of a horizontal tube with a small number
of short fins is exemplified in Fig. 3(b) for M =4

and H = 0.2. During pure forced convection in this
geometry, the temperature profile is identical in the
upper and lower quarters separated by the plane of the
horizontal fin, and the minimum temperature exists at
the tube centre. The presence of natural circulation
gives rise to a second minimum temperature in the
lower quarter and it destroys the symmetry between
the two quarters. It is also clear from Fig. 3(b) that
the lower part of the tube wall becomes a much more
effective heat transfer surface than the upper part.
A general reduction in the fluid-to-wall temperature
difference is experienced with free convection. Similar
trends can be seen in Fig. 3(c) for M = 4 and H = 0.5.

At the same Grashof number, Figs. 3(d) and (¢)
show the free convective effects on the temperature
distribution in tubes with a larger number of fins.
With long fins, there is some degree of separation
between the core area and the fin bays area. For ex-
ample, with M = 16 and H = 0.5, Fig. 3(¢) shows a
core area with isotherms similar to those of a smooth
tube and a number of bays with nearly similar tem-
perature structure. The interaction between the core
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FIG. 4. Isovels U/U, at Gr* =2x10% Pr=17: (a) M = 4,
H=05,b)M=16H=02.

and bays regions increases as the fin height decreases,
as shown in Fig. 3(d). From this figure, it can also
be noted that the amount of heat dissipation varies
considerably among the fin bays with the second bay
from the bottom providing the best performance.

Axial velocity distribution

For all geometries and all modified Grashof
numbers, the influence of free convection on the axial
velocity distribution was found to be less significant
than the influence on temperature distribution. This
trend is consistent with the smooth-tube results
reported in previous investigations (e.g. ref. [18])
and would have an impact on the friction factor and
Nusselt number, results which are presented later.

A sample of the present axial velocity distributions
is presented in Figs. 4(a) and (b). The general trend
in these results is for more mass concentration in the
lower part of the tube than in the upper part. For very
long fins (H = 0.8), the deviation in axial velocity
from the forced convection case was found to be insig-
nificant up to Gr* = 2x 10° (i.e. Ra* = 1.4 x 107).

Distribution of wall heat flux

Figures 5 and 6 show the trend in the present results
of local heat flux distribution at the solid wall (tube
and fins). These results are presented in terms of k/#4,
where A is the local heat transfer coefficient evaluated
from the temperature gradient normal to the wall and
f is the mean heat transfer coefficient over the whole
solid surface.

Figure 5 corresponds to a finned tube with M =4
and H = 0.5 and it shows the behaviour at Gr* =0,
10° and 2 x 10%. The abscissa is proportional to dis-
tance along the wall from the tip of the upper fin to
the tip of the bottom fin in the direction shown in the
inset of Fig. 5. At Gr* = 0, similarity exists between
bays 1 and 2, as expected, and the areas near the tips
of the fins are the most effective heat transfer surfaces.
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As Gr* increases, a higher proportion of the heat
dissipation occurs in bay 2, which is consistent with
the previous results of secondary flow and tem-
perature distribution. A gradual decrease in relative
heat transfer effectiveness can be seen at all the sur-
faces of bay 1 except for the area near the junction of
the horizontal fin and the circular wall where some
increase occurs. In bay 2, significant enhancement in
heat transfer effectiveness is evident at the circular
wall and the bases of the fins, while decreases in
effectiveness occur near the fin tips. It must be pointed
out that the results in Fig. 5 represent heat transfer at
a particular wall location relative to the average heat
transfer for each Gr*. Therefore, caution must be
exercised in interpreting these results since £ depends
on Gr*, as shown later.

A second case is shown in Fig, 6 for M =16, H=10.2
and Gr* = 0, 10° and 2 x 108, The figure is simplified
by including only the top bay and the bottom three
bays since the behaviour at any point within the ex-
cluded bays was found to be consistent with a gradual
monotonic change between the corresponding points
in bays 1 and 2. As expected from the previous results,
bay 3 (the second from the bottom) gets to be the most
active at Gr* = 2 x 10° while the top bay becomes the
least active. The modified Grashof number can be
seen to have a strong influence on the relative heat
transfer effectiveness of different parts of the solid
wall. Some similarities exist between Figs. 5 and 6 in
terms of trend.

Another way of presenting the heat flux character-
istics is shown in Fig. 7 in terms of Q{/Q’, where O}
is the integrated sum of the heat transfer rate from
the sides of the fins per unit axial length. For M = 4
and H = 0.2, Q¢/Q’ first decreases with Gr* and then
increases gradually. An increase in either M or H
causes an increase in the value of Gr* at which Q¢/Q’
starts decreasing. This is due to the fact that secondary
flow is retarded within the bays by increases in either
M or H, as shown earlier. Comparing Q¢/Q’ to A;/A,
which is the ratio of the total surface area of the fins
to the total surface area of the solid wall, we find that
the fins are more effective heat transfer surfaces for
all the geometries in Fig. 7 at low Gr*. With the
decrease in Q(/Q’ at high Gr*, Q{/Q’ becomes smaller
than A4,/ A for some geometries (e.g. M =4, H=10.2
and 0.5) which indicates that, on average, the circular
wall becomes more effective than the fins. This trend
may again reverse at Gr* higher than the values
covered in this investigation, as suggested by the
behaviour with M = 4 and H = 0.2 (where thereis a
gradual increase in Q/Q” at high Gr™).

Friction factor and Nusselt number

Values of f Re/f Re,, where f Re, corresponds to
pure forced convection for the same geometry, are
presented in Fig. 8 with the smooth-tube case included
for reference. These results show that f Re/f Re,
remains equal to unity up to a critical Grashof number
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Fi1G. 8. The friction factor ratio as a function of Gr* (Pr = 7).

beyond which f Re/f Re, increases with Gr*. This
critical Gr* increases as either M or H increases, which
can be attributed to the pattern by which the finning
geometry retards the onset of secondary flow. Also,
due to the fact that the presence of the fins generally
suppresses the values of the secondary velocities, we
find that the ratio f Re/f Re, decreases with increases
in either M or H at any given Gr*. For smooth tubes,
the enhancement in the friction factor due to free
convection exceeds that of finned tubes except for the
geometry M = 4 and H = (.2 at high Gr™*.

Figure 9 shows the variation of Nu/Nu, with Gr*,
where Nu, is the pure forced convection value for the
same geometry. The prevailing trends are similar to
the ones discussed above in connection with the fric-
tion factor results. However, it must be noted that for
any geometry, Nu/Nu, far exceeds f Re/f Re, at any

Gr*. This is consistent with the earlier results where
it was shown that the influence of the free convective
currents on the temperature distribution is much
stronger than the influence on the axial velocity dis-
tribution. The manner by which variations in M and
H influence Nu/Nu, is consistent with previously
published experimental and theoretical results {11, 13,
14].

Comparison with experimental results

Predictions of the present theoretical investigation
were compared with experimental data of fully-
developed, laminar, mixed convection of water in
horizontal internally finned tubes with uniform heat
input axially {11]. This comparison is shown in Fig.
10 for a tube with M = 16 and H = 0.318, and in Fig.
11 for a tube with M = 10 and A = 0.325. In both
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FIG. 9. The Nusselt number ratio as a function of Gr* (Pr = 7).
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FiG. 10. Comparison of I—V—Q/X’;‘, with experimental data for M = 16 and H = 0.318 (Pr = 4.3).

cases, the theoretical predictions were generated at
a Prandtl number equal to the mean value for the
respective data set. Only the values of Nu/Nu, were
used in this comparison since f Re/f Re, were not
reported in ref. [11].

Figures 10 and 11 show that the experimental data
of Nu/Nu, are overpredicted by about 10-15%. It
should be recalled that the present analysis assumes
negligible fin thickness and uniform fin temperature
(i.e. 100% fin efficiency). Both these assumptions
result in slight overestimation of Nusselt number for
the geometries considered in Figs. 10 and 11 {19].
Also, the experimental uncertainty in Nu was reported
to be within +15% [11]. Taking these factors into
account, it may be concluded that the comparisons
shown in Figs. 10 and 11 are quite satisfactory.
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CONCLUDING REMARKS

A numerical analysis of laminar, fully-developed
mixed convection in horizontal internally finned tubes
has been presented encompassing a wide range of
geometrical parameters. The results show that tube
geometry (M and H) has a strong influence on the
pattern and intensity of the secondary flow currents,
which is in turn reflected on the axial velocity and
temperature distributions, wall heat flux, friction fac-
tor and Nusselt number. In general, an increase in
either M or H suppresses secondary flow in the bays
formed by the fins at any given Grashof number.
Consequently, the departure of f Re and Nu from
their respective forced convection values begins at
higher Grashof numbers as M or H increases. This

[N | 1 1

Present Analysis
200k . Experiment [1(]
o 1.75
' =}
=
~
|2
1.50 r
125 .
L ]
l~00 1. 1 1 1
10°

4x10°

FiG. 11. Comparison of ATu/ZTl;O with experimental data for M = 10 and H# = 0.325 (Pr = 4.2).
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trend in the overall performance is consistent with
previously reported experimental data {11] and is now
justified by the detailed fluid flow and heat transfer
characteristics presented in this investigation.
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ANALYSE NUMERIQUE DE LA CONVECTION LAMINAIRE MIXTE DANS DES
TUBES HORIZONTAUX AILETES INTERIEUREMENT

Résumé—La convection permanente, laminaire, mixte dans la région pleinement établie d’un tube intér-
ieurement aileté est étudice dans le cas d’une entrée de chaleur axialement uniforme et d’une température
pariétale uniforme sur la circonférence. Les caractéristiques de I'écoulement et du transfert de chaleur sont
dépendantes du nombre de Grashof modifié Gr*, du nombre de Prandt! Pr, du nombre d'ailettes M et de
la hauteur relative d'ailette H. Les équations sont résolues numériquement pour le domaine paramétrique
M=4et 16, H=0,02,05¢t 08, Pr=7 et Gr* =0 4 2x10° Les résultats du calcul incluent les
composantes de I'écoulement secondaire, les distributions de la vitesse axiale et de la température, le flux
thermique pariétal, le coefficient de frottement et le nombre de Nusselt moyen. Lailetage interne retarde
apparition des effets de convection libre et supprime I'amélioration du coefficient de frottement et du
nombre de Nusselt, en comparaison du cas des tubes lisses. Un accord satisfaisant est obtenu entre les
présents résultats numériques et les données expérimentales antérieures.
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NUMERISCHE UNTERSUCHUNG DER LAMINAREN MISCHKONVEKTION IN
WAAGERECHTEN. INNEN BERIPPTEN ROHREN

Zusammenfassung—Dic stationdre laminare Mischkonvektion im Bereich vollstindig entwickelter
Stromung in emnem horizontalen, innen berippten Rohr wird untersucht. Daber wird der Fall gleich-
miBiger axialer Wirmezufuhr und gleichmiBiger Wandtemperatur am Umfang betrachtet. Es zeigt sich,
daB Strémung und Wirmeiibergang von einer modifizierten Grashof-Zahl (Gr~), der Prandtl-Zahl (Pr),
der Anzahl der Rippen (M) und der relativen Rippenhohe (H) abhingen. Die grundlegenden Differ-
entialgleichungen werden numerisch im folgenden Parameterbereich gelost: W =4 und 16. H =0 0.2;
0.5und 0.8: Pr =7 und Gr* = 0 bis 2 x 10%. Folgende Groflen werden berechnet: die Komponenten der
Sekundirstromung, die Verteilungen von Geschwindigkeit und Temperatur, die Wirmestromdichte an der
Wand, der Reibungsbeiwert und die mittlere Nusselt-Zahl. Es zeigt sich, dal die Innenberippung das
Einsetzen einer spiirbaren freien Konvektion verzogert ; im Vergleich zu glatten Rohren wird die Erhéhung
des Reibungsbeiwerts und der Nusselt-Zahl unterdruckt. Die Ubereinstimmung mit fritheren Ver-
suchsergebnissen 1st befriedigend.

YHUCJAEHHBI AHAJIM3 JIAMUHAPHON CMEINIAHHOW KOHBEKLIMH B
'OPU3OHTAJIBHBIX TPYBAX C BHYTPEHHHUM OPEBPEHUEM

Amoramms—Hccneayercs yCTaHOBUBILAACH JJAMHHAPHAA CMEUIAHHAA KOHBEKUHA B MOJIHOCTHIO Pa3BH-
Toil 0671aCTH rOPHIOHTAILHBIX TPY6 ¢ BHYTpEHHRM OpebpeHneM B cayyac aKCHaNBHOTO NOJBOIA TEILIA
K OMHOPOIHON MO OKPYXHOCTH Temmneparypsl. HafiieHo, ¥TO XapakTepHCTHKHM TEYCHHR XAIKOCTH H
TEIIONEPEHOCA 3aBHCAT OT MOAKMGHUBPOBaHHbIX uucen [pacroda Gr* u Ilpanarasa Pr, xoanuectsa
pebep M u ux OTHOCHTENbHOH BhCOTH H. Uncnenno pemaiotes onpeaensmoue aaddeperunansuple
ypaBHEHHS A8 napaMeTpos M =4 u 16, H =0;02; 051 0,8, Pr=7u Gr* =0 — 2 x 10°. [Tonyyennt
Pe3ybTaThi MUl KOMIOHEHT CKOPOCTH BTOPHYHOIO TEUEHHA, aKCHANBHOH CKOPOCTH H pacmpele/icHUs
TeMIEpaTyp, TEILIOBOTO MOTOKA HA CTEHKE, K0IDOHIINEHTA TPEHUA H CpeHero 3HaveHus umc1a Hycce-
nbTa. Halizewo, 4To BHyTpenHee opebpenue 3aTRrHBACT NOPOT 3aMETHOTO BIMAHHA CBOGOIHOR KOHBEK-
LMK H NOAABASET pocT ko3pHUHEHTa TPEHHR U YHcna HyccensTa no cpaBHEHHIO Co CTydaeM [M1aIKHX
Tpy6. IMony4eHo yaoBIETBOPHTENLHOE COTACHE MEXKAY MPEACTABICHHBIMHA YHCICHHBIMY Pe3y.1bTaTMH
M H3BECTHBIMH 3KCMIEPHMEHTATbHBIMH, JAHHBIMH.



